
ADDRESSING RESPONSIVENESS IN INTERACTIVE, PERVASIVE GAMES 

Davit Stepanyanf*, Ani Nahapetian* 

fJet Propulsion Laboratory (JPL), *California State University, Northridge (CSUN) 

davit.stepanyan@jpl.nasa.gov, ani@csun.edu 

ABSTRACT 

This paper presents a mobile, infrastructure-based game, 
which coordinates the networked interaction between pairs 

of players on mobile devices and a server-based 
visualization and processing component. There Is No Ball 

(TINB) system is a web and mobile based game system, 

which allows users to play a game of paddle board without a 

physical ball. A common instance of the game involves two 
players using tablets as paddles, to gather and communicate 

sensor information and simulate the hitting of an imaginary 

ball back and forth between the two devices. A third device 

interfaces with the server and the WebGL-based ball 
visualization to display the calculated location of the ball 

and project its moving image. 

The key challenge of game responsiveness in a highly

interactive game dependent on communication with a remote 

server and WebGL visualization is addressed. Specifically, 

local filtering strategies are applied to improve the 
responsiveness of actuation, and to deliver an enjoyable 

game experience. 

Index Terms- Mobile devices; sensor fusion; 

pervasive games; motion visualization, WebGL 

1. INTRODUCTION 

The There Is No Ball (TINB) system is an interactive 
infrastructure-based pervasive game of paddle-board using 

Android-enabled smart phones or tablets. It provides a 

virtual environment for hitting a ball back and forth between 

two users. Each game session is associated with a web view 

that visualizes the motion of the ball, in real-time. Figure 1 

summarizes the front-end system architecture, including the 
two tablets and the third machine which can project the 

moving ball. 

The TINB system was developed and used as a platform 

for investigating responsiveness in pervasive games, which 
collect and process sensor data from the mobile device, and 

use that data for an interactive game among pairs of players. 

Our analysis of TINB and its paddle board game highlights 

the benefits of user-side data filtering to address this system

level challenge. 

The realization of the game system contains several key 

challenges: 

The fusion of sensor data from the user tablet pairs, 

including pitch, tilt and acceleration data from each 

tablet; 

The real-time calculation of the ball position, and 

the transmission of select data to and from both 
tablets, in a timely manner; 

The development of an attractive game interface, 

whose responsiveness is deemed acceptable by 

system users. 

The TINB system implementation interfaces with a 
variety of software and middleware frameworks. A native 

Android app was created for use on each of the user tablets. 

Sensor data is obtained from each of the devices and 

actuation was also carried out throughout the game. The 

continuous sensor data collected undergoes some local 

filtering, before being transmitted to a remote server that 
carries out the majority of the ball motion calculation. The 

data calculation on the server-side is tied in with a WebGL 

framework for a user-friendly and fun interface for 

displaying the imaginary ball with an HTML 5 enabled 

browser. The information about hits is relayed back to the 

tablet, also, for display on the user side. 

'TIiPI'op 

I Oataout 

Fig. 1. Front-end system architecture of the TINB system. Two 

players play a game of paddle board with respective tablets. The 

data is relayed between the tablets and a third device, which can be 

connected to a projector to project the ball motion. 

The remainder of this paper is organized in the following 

manner. Section II presents the related work in this area, 

including mobile games, pervasive games, and interactive 
mobile games. Section III describes the TINB system with 

its tablet view and web view. Section IV addresses 



implementation issues and describes how the ball motion is 

calculated from the collected sensor data. Section V 

discusses the data filtering that was carried on the user-side 
to address the challenge of responsiveness. Section VI 

presents the results of the user study of the system and the 

results obtained regarding its responsiveness. Finally, 

section VII concludes the paper. 

2. RELATED WORK 

Interestingly, the first computer game, developed in 1958, 

was Tennis for Two [1]. Gaming on mobile devices is ever 

popular and growing [2], with an important class of mobile 

games including pervasive games [3] that use on-board 

sensor technology. Examples of such games include those 

developed on the Poppet framework [4], which use sensors 

on mobile devices including accelerometers, camera, and 

RFID. Games on this framework include Mobi-tron (the 

classical Tron game played with a mobile phone) and 

TiltRacer (a 2D racing game) [4]. Other pervasive games 

include CatchBob! [5] and Human Pacman [6]. There are 

augmented reality (AR) games, as well, which interact with 

the environment, such as the Alchemists and TimeWarp [7]. 

Interactive mobile games, involve the interaction of 

several players on different mobile devices, including 

infrastructure-based or cloud-based games surveyed here 

[8]. Emerging classes of interactive mobile games are games 
on vehicular networks (V ANETs) [9] and games for 

improving personal health [lO] [11]. 

In this work, we use the TINB system to address system

level issues with pervasive and interactive mobile games, 

with an infrastructure-based model of communication. With 

our paddle board implementation, we develop a platform for 

accessing the validity of addressing responsiveness in this 

environment with data filtering. 

3. SYSTEM DESCRIPTION 

The TINB system is composed of mobile devices connected 
to simulate a game of paddle board. Each user takes a tablet, 

which acts a paddle in the game. The tablets are swung just 
as paddle would be, and the virtual ball is hit back and forth 

between the players. Currently, at most two players can play 

the game. In the case of individual play, the ball is hit 

against an imaginary wall. 

Each game session is associated with a web view that 

visualizes the motion of the ball, in real-time. Ideally, the 
screen can be projected onto a wall, to simulate the 

appearance of a real ball being hit between the players. 

3. 1. Game Play 

At the start of each game, users select single or two-person 

game play, which player they will be in the case of two

person play, and which level of difficulty they would like to 

play. Players hit the ball back and forth between each other. 

If the tablet swing misses the ball, the ball falls to the 

ground. The ball is then returned to the opposing player and 

a new round of play begins. If the game is restarted, then the 

ball returns to player l's paddle. 

3.2. Tablet Interface 

During game play, users swing the tablet as they would a 

physical paddle. The timing of the hit, the orientation of the 

tablet, and the speed at which the ball is hit are all factors in 

determining the motion of the ball. When the ball is hit 

successfully, the tablet provides haptic feedback to the user 

and a "HIT " message is displayed on the screen. Figure 2 

provides the screen shot of the tablet view of the game. 

Fig. 2. The screen shot of the tablet interface during a hit 

10 

(a) 

(b) 

Fig. 3. The web-interface for a mobile device enabled paddle 

board game. Two tablets hit an imaginary ball back and forth, 

while the location of the ball is displayed on this web interface. 

Figure 3(a) shows the starting position of the ball, along with the 

tablet orientation; and Figure 3(b) shows the ball after a hit. 



3.3. Web Interface 

The web interface of the game is created ostensibly to 

display the motion of the ball. Players can access the web 

interface from a web browser, and even project the image to 

the screen during game play, further enhancing the 

experience. 

The web interface is implemented using PHP and 

Javascript, interfacing with WebGL for a graphically 

attractive view. WebGL requires HMTL 5 for the WebGL 

processes to be rendered on the HTML canvas. (We have 

prepared a simpler alternative HTML page, for browsers not 

HTML 5 enabled.) Information on the screen is updated 

using AJAX calls, which allows for dynamic page updates 

upon data changes, instead of the more cumbersome page 

refreshes at set time intervals. Figure 3 shows two snapshots 
of the web view during game play. 

4. IMPLEMENTATION DETAILS 

The system back-end, summarized in Figure 3, involves 

filtered data being transmitted from each of the user tablets 

to a remote server, once a threshold value for a move is 

detected. The data is processed on the server, information is 

then transmitted to the tablets to provide feedback to users in 

the case of a hit of the ball. Furthermore, the ball motion 

data with the graphical interface is available through a web 

browser. 

Fig. 4. Back-end system architecture of the TINB system. Data is 

filtered locally and transmitted to a remote server where 

calculations of the ball motion are carried out. 

4. 1. Sensor Fusion 

Sensor data, namely pitch, roll, and X-, y-, and z

acceleration, is collected form the individual tablets. The 

identification of the various potential movements of the 

tablet are summarized in Figure 5. We disregard the Yaw 
values, since the rotation of the tablet is not relevant to the 

ball motion calculation. However, pitch and rolls values are 
used to determine the tablet position when a swing is carried 

out. The absolute position of the tablet is not used in the 

game play. 

z 

y 

x 

Fig. 5. Tablet movement parameters: Roll, Pitch, and Yaw 

4.2. Ball Motion Calculation 

Projectile motion calculations are used to determine the 
trajectory of the ball throughout the game play. Figure 6 

demonstrates how the ball would move in relation to the 

tablet if the ball were physically being hit by the tablet. The 
tablet and the ball move together at the beginning of the 

swing (point A and point B). At some point C they are 

separated. 

Timelin� 
I 

Fig. 6. Model of tablet hitting ball over time. 

The initial velocity of the ball at point C is given by 
Equation (1). 

------> ------> .. 

vP"imC = Vp"imA + at (1) 

Assuming that the tablet starts from a resting position, i.e. its 

initial velocity at point A is 0, then v;:;;:; = 0, Equation (1) 

can be re-written as Equation (2). 

(2) 

Fig. 7. Ball coordinates with origin at point C. 

As illustrated in Figure 7, the position (x, y, z) of the ball is 
calculated relative to the point C. For the x-coordinate: 

(4) 

Where ax is the x-component of the tablet acceleration at 

point C (collected from the tablet's accelerometer). Similarly 

for the z-coordinate: 



(5) 

We ignore the impact of air friction on the ball, as it 

accounts for a negligible difference. Therefore, the velocity 

in x- and z-directions is constant. The velocity in the y

direction of the ball, however, changes due to gravity. Thus 

--'I rtF' ely T' By T' BT ' 
Y = VaT+-2- = Voyt T +-2- = VoytT+-2- = l'oytT --2- (6) 

Using equation (2), 

(7) 

Thus, at any given time T, ball will have the following 

position: 

(8) 

4.3 Handling Difficulty Levels with Precision Loss 

The different difficulty levels of the game are created by 

varying the precision of the tablet position and swing 

intensity necessary to land the ball on the other player's 

tablet. The point location of the ball at the end of the 

projectile motion is expanded and converted into an area, 

whose radius is determined by the difficulty setting of the 

game. If an overlap between the generated area and the 

opponents tablet exists, then the ball is assumed to have 

landed on the opponent's tablet. This calculation is done 

before the motion of the ball is displayed, thus preserving 

the quality of graphical interface. 

For none of the difficulty levels is the necessary timing 

modified. In the easy level, if the user hits the ball at the 

right time then the ball lands on the opponent's tablet, as the 
radius of the area at that level is infmite. For progressively 

harder levels, the radius of the area is proportionally 
decreased. 

5. DATA FILTERING FOR RESPONSIVENESS 

The most significant implementation challenge involves 

overcoming issues of responsiveness, specifically the delay 

in displaying ball motion using data from the swing of the 

tablets. This delay is addressed by filtering the swing data on 

the user's device. 

To carry out the filtering, the acceleration values in the 

X-, y-, and z-directions are evaluated against threshold 
values. If the threshold is met in either case, a session is 

started with the server and all relevant filter sensor data is 

transferred. Figure 8 demonstrates the quantity of sensor 

data collected from the tablet before and during a swing, and 

Figure 9 provides the accelerometer data used to signal that 

the server code should start computing the ball motion. 

." 

Fig. 8. Accelerometer values over time for swing of the tablet, as 

obtained from the tablet. 

..• -� 
- y 

z. 

0.5 

o �. �::=====-____ { 
... 

Fig. 9. Accelerometer values over time for swing of the tablet, 

transmitted to the server to calculate the ball motion. 

Fig. 10. All sensors values during a swing of the tablet, once a 

threshold value is reached, as obtained from the tablet. 

Fig. 11. Accelerometer values during a swing of the tablet, 

processed at the server to calculate the ball motion, once a 

threshold value of change is reached. 



Figure 10 demonstrates the quantity of sensor data 
collected from the tablet during a swing, and Figure 11 

provides the filtered data transmitted to the server to 

compute the ball motion. 

The small variations in sensor data collected from the 

tablet, if transmitted to the server, would result in small 

movement calculations for the web interface display, 

unnecessarily slowing down the game play. Instead, as 

shown in Figure 11, accelerometer, pitch, and roll data is 

transmitted to the server, if the accelerometer values in any 

of the three axes are above a threshold. Otherwise, the ball 

motion and the table movement are extrapolated from the 

previously recorded sensor values. 

6. USER STUDY 

To determine the attractiveness of the game to potential 

users a small user study was carried out, with specific 

attention being given to game responsiveness. The study 
included 10 users, three 3 women and 7 men, all between the 

ages of 20 and 35 years old. Each of the participants was 

given a 1 minute introduction on how to play the game. 

They, then, were paired together to play the game. 
Immediately following the game play, they were given an 

anonymous survey to complete. 

1 2 3 4 5 

Level of responsiveness during game play I 2 3 4 5 

1 2 345 

Overall satisfaction with game I 2 3 4 5 

Fig. 12. Survey questions used in user study. 

Fig. 13. Results of the survey administered to 10 participants. 

The survey was composed of the 6 questions provided in 

Figure 12, with participants rating features of the game 

including responsiveness, similarity to physical game play, 

and overall satisfaction. The results of the survey are given 

in Figure 13. The results are promising, especially in terms 

of fun with game play, which averaged to 3.6 out of 5. 

7. CONCLUSION 

The TINE mobile game system presented in the paper is 
composed of various mobile devices wirelessly connected to 

simulate a game of paddle board. Users swing tablets to 

move a virtual ball is hit back and forth between the players. 

The approach to filtering the data on the user side, to 

improve the game's responsiveness during game play, is 

highlighted, along with the encouraging results of the user 

study. 

8. REFERENCES 

[1] J. Anderson, "Tennis for two: the story of an early 

computer game, " Accessed on 15 April 2012. 

http://www.pong-story.comlI958.htm. 

[2] T. Fritsch, et aI, "Mobile phone gaming (a follow-up 

survey of the mobile phone gaming sector and its 

users), " ICEC'06, pp. 292-297, 2006. 

[3] D. Schuster, et ai, "Pervasive social context-taxonomy 

and survey, " ACM Trans. Intell. Syst. Tech., Vol. 9, No. 
4, Art. 39, pp. 1-22. 

[4] Y. Lee, et aI, "MobiCon: a mobile context-monitoring 

platform, " Comm. of ACM, vol. 55 no. 3, pp. 54-65, 
March 2012. 

[5] O. Akribopoulos, et aI, "Developing mUltiplayer 

pervasive games and networked interactive installations 

using ad hoc mobile sensor nets, " ACM ACE '09, pp. 

174-181, 2009. 

[6] A. D. Cheok, et ai, "Human pacman: a sensing-based 
mobile entertainment system with ubiquitous computing 

and tangible interaction, " ACM NetGames '03, pp. 106-

117, 2003. 

[7] W. BroIl, et ai, "Toward Next-Gen Mobile AR Games, " 

IEEE Compo Graphics and Appl., vol. 28, no.4, pp. 40-

48, July-Aug. 2008. 

[8] M. Gerla, et aI, "A survey on interactive games over 
mobile networks, " Wiley Wireless Comm. Mob. Comp., 

vol. 13, no. 3, Feb. 2013. 

[9] O. K. Tonguz and M. Boban. "Multiplayer games over 

vehicular ad hoc networks: A new application, " ACM 

Ad Hoc Networks, vol. 8, no. 5, pp.531-54, July 2010. 
[10] J. Woodbridge, et aI, HIP: Health Integration Platform. 

IEEE PerHealth '10, March 2010. 

[11] M.-K. Suh, et ai, "Bayesian networks-based interval 

training guidance system for cancer rehabilitation, " 

MobiCASE '09, Oct. 2009. 


